
FMTCP: A Fountain Code-based Multipath Transmission Control Protocol

Yong Cui∗, Xin Wang†, Hongyi Wang∗, Guangjin Pan‡ and Yining Wang∗
∗Tsinghua University, Beijing, P.R.China

Email: cuiyong@tsinghua.edu.cn, {wanghongyi09, wangyn19}@mails.tsinghua.edu.cn
†Department of Electrical and Computer Engineer
Stony Brook University, Stony Brook, New York, USA

Email: xwang@ece.sunysb.edu
‡Beijing University of Posts and Telecommunications

Email: ilffe@126.com

Abstract—Ideally, the throughput of a Multipath TCP
(MPTCP) connection should be as high as that of multiple
disjoint single-path TCP flows. In reality, the throughput of
MPTCP is far lower than expected. This is fundamentally
caused by the fact that a subflow with high delay and loss
affects the performance of other subflows, and thus becomes
the bottleneck of the MPTCP connection and significantly
degrades the aggregate goodput. To tackle this problem, we
propose Fountain code-based Multipath TCP (FMTCP), which
effectively mitigates the negative impact of the heterogeneity of
different paths. FMTCP takes advantage of the random nature
of the fountain code to flexibly transmit encoded symbols from
the same or different data blocks over different subflows.
Moreover, we design a data allocation algorithm based on
the expected packet arriving time and decoding demand to
coordinate the transmissions of different subflows. Quantitative
analyses are provided to show the benefit of FMTCP. We also
evaluate the performance of FMTCP through ns-2 simulations
and demonstrate that FMTCP can outperform IETF-MPTCP,
a typical MPTCP approach, when the paths have diverse
loss and delay in terms of higher total goodput, lower delay
and jitter. In addition, FMTCP achieves much more stable
performance under abrupt changes of path quality.

I. INTRODUCTION

Currently, the majority of data transmissions go through

TCP. In a network with high loss and delay, such as a

wireless network, the performance of TCP degrades signif-

icantly due to frequent retransmissions of lost or erroneous

packets. In addition, a user may want to transmit data at a

higher aggregate throughput when having multiple access to

the network. However, conventional TCP cannot enjoy the

multihoming feature.

In order to solve these problems, Multipath TCP

(MPTCP) [1][2] has been proposed to transmit TCP si-

multaneously over multiple paths to improve its goodput

and reliability. When all the paths are good, subflows can

transmit as usual and the throughput of MPTCP is high as

expected. However, if the paths have high diversity in quality

(i.e., with different loss or delay), the throughput of MPTCP

degrades sharply because the low-quality paths will impact

the transmission of good paths and become the bottlenecks

of MPTCP. Some studies [1][2] show that the throughput of

MPTCP can be even worse than an ordinary TCP in some

cases, and MPTCP is sensitive to the path quality.

To solve the bottleneck problem, some attempts [3][4]

have been made to improve the throughput over lossy

networks. However, if a large number of packets need to

be retransmitted due to the high loss rate, it would incur a

high overhead to schedule packet retransmissions. It is also

very difficult to coordinate transmissions among all paths.

If the transmissions can be made more reliable, it would

help to alleviate the above problems. Instead of simply

relying on TCP retransmissions, in this paper, we propose

a Fountain code-based Multipath Transport Control Proto-

col (FMTCP) where we introduce the fountain code into

MPTCP to improve the throughput and reduce the bottleneck

impact due to paths with lower transmission quality.

A fountain code is a linear random code for channels

with erasures, where a symbol is generated based on random

linear combination of original block data. With its low

complexity and redundancy, different fountain codes are

considered for use in different transmission standards. The

advantage of fountain codes lies in that the original data can

be encoded into an arbitrary number of symbols based on

the transmission quality, and the receiver can easily recover

the original data after obtaining enough encoded symbols.

Taking advantage of fountain codes, in FMTCP, a sender

simply generates new encoded symbols for a block based
on the remaining number of symbols needed for reliable

decoding. Instead of retransmitting the lost packets along the

same path which is required to detect the missing packets,

symbols from the same or different blocks are put into one or

multiple packets. Packets are flexibly allocated to different

TCP subflows for transmissions based on the estimated pack-

et arriving time reflecting transmission quality of each flow,

so the low-quality paths will no longer be the bottlenecks of

the overall multi-path TCP transmission. As only randomly

generated symbols are needed for decoding, there is no

need for FMTCP to coordinate transmissions on different

paths, which not only significantly reduces the complexity

of scheduling but also reduces the difference in transmission

time on diverse paths. This will in turn significantly improve

2012 32nd IEEE International Conference on Distributed Computing Systems

1063-6927/12 $26.00 © 2012 IEEE

DOI 10.1109/ICDCS.2012.23

366

Authorized licensed use limited to: Tsinghua University. Downloaded on June 16,2022 at 04:28:27 UTC from IEEE Xplore. Restrictions apply.

the TCP performance. We provide both quantitative analysis

and simulations to show the performance of FMTCP. Our

studies demonstrate that FMTCP has much higher and more

stable performance than IETF-MPTCP.

The rest of the paper is organized as follows. We discuss

the related work in Section II. Then we present our design

of FMTCP and our data allocation algorithm along with

quantitative performance analysis in Sections III and IV

respectively. Finally, we evaluate the performance of the

proposed FMTCP in Section V and conclude the work in

Section VI.

II. RELATED WORK

In a network with high loss and/or delay, such as wire-

less networks, conventional TCP suffered from performance

degradation due to frequent retransmissions and reordering.

Some solutions [5][6] optimize congestion control to com-

pensate the performance degradation caused by packet loss.

Other efforts [7][8][9] have been made to introduce network

coding into TCP over wireless networks. Y. Huang [7]

showed that network coding helped reduce packet loss

probability and decrease the retransmissions, thus improving

the throughput. J.K. Sundararajan proposed a scheme which

combined random linear network coding with TCP [9].

Compared to the literature work, FMTCP employs coding

mechanisms which fundamentally avoids retransmissions

and reduces reordering without doing harm to the fairness

of transmission.

As it becomes common for a portable device to have

multiple interfaces in recent years, using all interfaces

simultaneously is expected to improve the goodput and

stability of TCP transmissions. Therefore, TCP transmission

over multiple paths has been proposed to improve the

performance. H. Han et al. [10] proposed to split the flow

between source and destination, and showed that multipath

algorithms were superior to a single path scheme. G. Kwon

et al. [11] proposed ROMA which used loosely coupled TCP

over multiple paths plus fast forward error correction. J.

Chen proposed multipath routing to enhance TCP perfor-

mance in lossy environment [12]. Several copies of each

packet are transmitted over multiple paths, which reduces

the loss rate and improves the throughput. In [13], Y. Lee

addressed the issue due to frequent packet reordering to

increase the TCP throughput. IETF standardizes the design

and implementation of a multipath TCP [2], and we denote

it as IETF-MPTCP to differentiate it from general MPTCP

schemes. Some works [14][15] analyzed and developed

multipath congestion control algorithms for MPTCP. In

these schemes, the bottleneck of multipath is consider as

the major issue. The throughput of MPTCP is influenced by

poor paths.

V. Sharma proposed a Multi-Path LOss-tolerant Transport

(MPLOT) protocol [16], which takes advantage of current

diverse paths to improve the goodput of wireless mesh

networks and reduce packet recovery latency. It also used

fixed-rate coding scheme, which does not have good perfor-

mance when the path quality decreases sharply. Besides, the

scheduling scheme was too simple and could not adapt to

varying transmission quality from different networks well.

When the path quality degrades abruptly, the source has

to retransmit lost packets and this will result in bottleneck

problem again. In our scheme, a fountain code [17] is

applied into multipath TCP. Lost packets do not need to

be retransmitted. Taking advantage of the random nature

of the fountain code, our scheduling mechanism can co-

ordinate transmissions over multiple paths well. When the

path quality decreases, the source only needs to transmit

new encoded symbols according to the decoding need of

the destination. Consequently, our scheme can effectively

address the problems due to severe communication channels

and high diversity of transmission quality over multiple

paths.

Another important multipath transport protocol which

supports multi-streaming and multi-homing is SCTP (Stream

Control Transmission Protocol) [18]. However, in basic

SCTP design, multiple paths are only taken as the backup of

a primary path and Concurrent Multipath Transfer(CMT) is

not supported. J. R. Iyengar et al. proposed CMT-SCTP [19]

which adds CMT support to SCTP. Their later work [20] in-

dicates that in CMT-SCTP the low-quality (e.g., a path with

high loss rate) paths degrade the overall throughput because

the limited receive buffer blocks the transmission, which

agrees with our observations for MPTCP. To overcome this

”receive buffer blocking problem”, Y. Hwang et al. [21]
presented HMTP (Heterogeneous Multipath Transport Pro-

tocol). Similar to our solution, HMTP also takes advantage

of Fountain Code. However, in HMTP, the sender keeps

encoding and sending packets until the receiver completes

decoding and sends a stop message. This stop-and-wait

mechanism is obviously inefficient and possibly generates

redundancy. We address this issue by introducing predic-

tion mechanism in scheduling data encoding and further

optimized the data allocation among different subflows by

considering the diversity of path quality.

III. FMTCP DESIGN

As the degradation of transmission quality of individual

subflows could significantly impact the total goodput of

MPTCP, we propose to introduce the fountain code to

improve the transmission quality. Compared to a fixed-rate

coding scheme, the rateless fountain code has the benefit of

changing the coding rate on the fly based on the receiving

quality while introducing very low overhead. In this section,

we first introduce the basic architecture of our proposed

FMTCP, and then analyze the benefit of using the fountain

code for transmission.

367

Authorized licensed use limited to: Tsinghua University. Downloaded on June 16,2022 at 04:28:27 UTC from IEEE Xplore. Restrictions apply.

Encoded

Symbols
Encoded

Symbols

Encoded

Symbols

Figure 1. FMTCP Sender Architecture

A. Architecture

The sender side architecture of FMTCP is illustrated in

Fig. 1. We introduce the fountain code into the transport

layer and transmit encoded data via multiple paths. A byte

stream from applications is divided into blocks, which are

taken as the input of the encoding module inserted on top of

the data allocation module. After the encoding, each block is

converted to a series of encoded symbols, which are carried

in packets and transmitted to the receiver.

On the receiver side, encoded symbols are converted back

to the original data through a decoding module appended

on top of the data aggregation module. Once decoded, the

data can be transmitted to the application layer, and the

corresponding symbols can be removed from the receiving

buffer.

Upon a subflow gets a transmission opportunity, the

sender needs to generate encoded symbols from the pending

blocks and combine these symbols into a packet for the

subflow. A receiver will extract encoded symbols from

packets and aggregate the symbols from different subflows.

If the received symbols are enough to recover a block,

these symbols can be sent to the decoding module. The

main challenges are to determine the number of symbols

to transmit for a block and which subflows the symbols of a

block should be assigned to in order to improve the goodput.

If the receiver has obtained enough information to recover a

block, it is redundant to send more symbols for that block.

On the other hand, if the received symbols of a block are

inadequate to be decoded, they would occupy the receiving

buffer and further influence the receiving of latter blocks.

We will handle this issue in later sections.

Another issue in designing subflow transmissions is fair-

ness, i.e. whether it is TCP-friendly. TCP-friendliness mainly

focuses on the behaviors when different flows share a

common bottleneck link. However, the definition of fairness
for multi-path transmission protocols is still disputable.

M. Becke et. al. [22] investigate the existing congestion

control approaches and try to extend the definition of

fairness from single-path transport to multi-path transport.

They mainly analyze four mechanisms: the AIMD(additive-

increase/multiplicative-decrease) approach applied by TCP

and SCTP [18] denoted by Reno-SP, Reno-MP used by

CMT-SCTP [19] and IETF-SCTP [23] which simply apply

Reno-SP on each of the paths independently, RP-MP-v2 [24]
which applies the idea of RP (resource pooling) to couple

the congestion control of the paths, and MPTCP used by
[14] to support TCP-fairness for IETF-MPTCP. This paper

mainly focuses on packet encoding and data allocating and

our framework can adopt any one of the above-mentioned

congestion control mechanisms. Moreover, as we only use

disjoint paths in the simulations, the selection of congestion

control mechanisms would not influence the results.

B. Coding Analysis and Consideration

A fountain code is a rateless FEC coding scheme. In other

words, each block can be encoded into an arbitrary number

of symbols. The size of a block b is associated with the
symbol size. If a symbol of block b consists of k̂b bits, the
block b will be composed of k̂b parts {ρ1, ρ2, · · · , ρk̂b}, with
each part having k̂b bits , and thus block b has k̂

2
b bits in total.

When encoding the block, the sender will generate a k̂b-
bit vector (gnk) and get the corresponding encoded symbol
cn by (1). By randomly generating (gnk), the sender can
infinitely produce new symbols.

cn = (

k̂b∑
k=1

ρk · gnk) mod 2 (1)

The receiver will get a series of encoded symbols. When

it get k̂b linear independent symbols, the decoding can be
done. When a host receives kb symbols of block b, the
probability of the failure in decoding b can be estimated as

δb(kb) =

{
1 if kb < k̂b
2k̂b−kb otherwise

. (2)

Each time the receiver gets symbols of b, it checks
the linear independence and drops redundant symbols. The

number of received linearly independent symbols, k̄b, is
carried in an ACK and transmitted to the sender.

In determining k̂b, several constraints should be consid-
ered:

• Buffer size: Since all symbols of a block should be
buffered until the block is decoded, the size of a block

should be no more than the buffer size of the receiver.

• Maximum segment size: Similar to TCP, FMTCP also
employs maximum segment size, MSS, to limit the size

of a packet. The total size of the encoded symbols

in a packet should be smaller than MSS to avoid the

fragmentation of packets.

368

Authorized licensed use limited to: Tsinghua University. Downloaded on June 16,2022 at 04:28:27 UTC from IEEE Xplore. Restrictions apply.

• Coding complexity: The complexity of coding grows
with the increase of the block size. Therefore, k̂b
should be limited to ensure the efficiency of coding.

We select an appropriate block size such that the coding

complexity is low and will not cause a bottleneck to the

end-to-end transmission.

There is also another type of FEC coding, the fixed-

rate coding. For the fixed-rate coding, a block of data is

encoded into a fixed number of symbols before sending to

the receiver. If there are transmission losses, the protocol

should retransmit the lost symbols. In order to estimate

the number of packets for transmission, the sender should

have a knowledge of the path loss rate and identify which

symbol is lost. Therefore, fixed-rate coding constrains the

transmission for a block over the same path. This makes the

transmission inefficient especially when a path experiences

a bad condition. With a fountain code, a block of data can

be encoded into an arbitrary number of symbols based on

the transmission quality. To ensure the reliable decoding, the

receiver only needs to inform the sender for the number of

symbols received, and the sender will generate some new

symbols instead of retransmitting old symbols.

When TCP data transmissions are carried over multiple

paths that may go through heterogeneous wireless networks,

the quality of different paths is different and possibly varies

over time. This makes fixed-rate erasure codes difficult to

apply. We take the single-path scenario as an example to

demonstrate the ineffectiveness of fixed-rate erasure codes.

Assume the block size of a fixed-rate encoding scheme

contains A packets, i.e., the receiver should receive at least

A packets to successfully decode the data, and the loss

rate p1 is used in the algorithm to estimate the number

of packets that need to transmit. We define the Expected

Packets Delivered as follows.

Definition 1. Expected Packets Delivered is the expected
number of packets of a block b delivered in order to
successfully decode the data.

We use E(X) to denote the Expected Packets Delivered
of a block, and E(X) is expressed as:

E(X) =
A∑
i=1

∞∑
j=0

pj1(1− p1)(j + 1) =
1

1− p1
A. (3)

Therefore, the number of packets a sender generates in

the fixed-rate coding is set to

a =
1

1− p1
A,

and the average number of packets lost on the path is

d =
p1

1− p1
A. (4)

If the actual loss rate of the path is p2 and p2 > p1 (i.e. the
loss rate is underestimated in the algorithm), it is possible

that more than b packets are lost on the path. If this happens,
the sender is forced to retransmit some packets. Next we

would like to give an upper bound of the probability that no

retransmission occurs.

We use XR to denote the number of packets actually

delivered. The mean of XR is expressed as

E(XR) = (1− p2)a =
1− p2
1− p1

A. (5)

XR is a random number and can be represented as: XR =∑a
i=1Xi, where Xi ∈ {0, 1} is a random variable indicating

whether a packet has correctly arrived on the other end. We

can use Chernoff’s Bound to give an upper bound on the

probability of a successful transmission:

Pr(XR ≥ A) = Pr(XR ≥ 1− p1
1− p2

E(XR))

≤ exp

(
− (p2 − p1)

2

3(1− p1)(1− p2)
A

)
. (6)

From Eq. (6), the probability of a successful delivery

(i.e., no retransmission) decreases exponentially as the size

of a block goes up. Therefore, when the block size in a

fixed-rate algorithm is large and the loss rate of the path is

underestimated, there is a high probability of retransmission

during the delivering of the block. Under the Go Back N

protocol, this would lead to a large waste of bandwidth. A

selective repeat protocol might be used to reduce the band-

width consumption at the cost of a high storage overhead,

and it is rarely used by practical systems.

In addition to packet-level analysis, we also provide

a fine-grained computation by considering the number of

transmitted symbols. Assuming the loss rate is p, we can
compute Expected Symbols Delivered for the Fountain code,
E(Y), as below:

E(Y) ≤ 1

1− p
(k̂b+

∞∑
j=1

j · 2−(j−1)) ≤ 1

1− p
(k̂b+4). (7)

Eq. (7) shows that when a packet was lost, FMTCP only

needs to append a constant number of symbols, thus limiting

the number of packets retransmitted. However, with fixed-

rate coding, it often needs to send a large number of packets

under a Go-Back-N scheme.

IV. DATA ALLOCATION

Data allocation plays a key role in improving the per-

formance of FMTCP. In the data allocation process, the

transmitter needs to determine an appropriate subflow to

transmit a new packet and insert the encoded symbols

into the packet. It affects both the transmission efficiency

(i.e., the redundant data to transmit) and decoding delay.

FMTCP addresses this issue by estimating the number of

required symbols for each pending block. More specifically,

the sender generates new symbols for the pending blocks

369

Authorized licensed use limited to: Tsinghua University. Downloaded on June 16,2022 at 04:28:27 UTC from IEEE Xplore. Restrictions apply.

based on the estimation of path quality and the knowledge

on the number of linearly independent symbols received, and

then transmits these symbols via a proper subflow. In this

section, we will first theoretically analyze this problem and

then present our data-allocation algorithm.

A. An Analysis on Data Allocation

As introduced earlier, k̄b indicates the number of symbols
successfully received from a block b. We use the following
definition to represent the receiving status of blocks.

Definition 2. A block b is complete if k̄b = k̂b; otherwise,
the block is pending.

Let B={b1, b2, ..., bn} be the set of blocks. The data

contents inside a packet i can be described by a vector
V = (v1, v2, · · · , vn), in which vj denotes the number
of symbols of bj carried in the packet. We also use F
to represent the set of all the subflows. Each subflow f
maintains its remaining congestion window size wf and the

retransmission timeout RTOf . We denote pf and RTTf
as the statistic loss probability and round trip time of the

subflow f respectively.
Intuitively, to improve the efficiency and goodput of

MPTCP, a design should meet the following two goals. First,

for any block, the sender should not transmit redundant

encoded symbols to the receiver. That is, if the receiver has

obtained enough encoded symbols to decode a block, no

symbol of that block should be sent to avoid the waste of

bandwidth. Second, if the block bi is before the block bi+1,

bi should be completed before bi+1. To ensure the delivery

order, only by completing the first pending block can the

receiver release its buffer in time. This helps to alleviate the

constraint on the aggregated data rate as a result of flow

control.

However, these objectives are difficult to achieve in re-

ality. To avoid sending redundant data for a block b, the
sender can send (k̂b − k̄b) symbols for b before receiving
the next ACK for b. However, even if the receiver gets

all the (k̂b − k̄b) symbols, it is possible that the receiver
fails in decoding b because these symbols could be linearly
correlated and thus the receiver does not have enough

linearly independent symbols for decoding. If the failure

happens, the receiver informs the sender with ACK and the

sender has to send additional symbols for the block b. This
stop-and-wait mechanism is obviously inefficient and the

problem is even more severe when there are transmission

losses. Moreover, if the sender takes the second objective

into consideration, the incompletion of a block may further

influence the transmission of the following blocks.

To address the first issue, we associate the decoding

failure probability with the completion of a block. According

to the nature of the fountain code and the ways to determine

its decoding quality, a sender can estimate the expected de-

coding failure probability of a block b based on the received

number of linearly independent symbols indicated by ACKs

and the number of symbols of b carried in unacknowledged
packets. Let lfb denote the number of encoded symbols of
block b in the congestion window of subflow f, and pf be
the loss rate. The estimated number of symbols received, k̃b,
can be calculated as

k̃b = k̄b +
∑
f∈F

lfb ∗ (1− pf). (8)

Based on the estimation of k̃b, we associate the expected
decoding failure probability with the following definition.

Definition 3. The expected decoding failure probability of
a block b, denoted by δ̃b, is a function (δb(k̃b)), which can
be computed using Eq. (2).

Next, we give a definition of δ-completeness of a block
as follows.

Definition 4. A block b is δ-complete if the expected
decoding failure probability of b, denoted by δ̃b, is less than
δ.

We employ the maximum acceptable decoding failure
probability, denoted by δ̂, as the threshold to predict whether
a block is complete. If a block b is δ-complete, it is expected
to be decoded by the receiver and thus there is no need to

send more symbols for b.
Note that k̃b is updated by either new ACKs or the

advance of congestion windows. In order to ensure a block

is δ̂-complete, k̃b should be larger than k̂b + log2
1

δ̂
.

Based on the definition of δ-complete and the maximum
acceptable decoding failure probability, we can derive the

following rules for data allocation:

• R1: For a block b, no more symbols should be sent if
it becomes δ̂-complete.

• R2: Let B1 denote the set of blocks before b1. The
symbols of b1 cannot be sent until all the blocks before
b1 become δ̂-complete.

The purpose of Rule 2 is to reduce the arriving jitter of

blocks thus to alleviate the bottleneck effects of bad-quality

flows. A sender computes δ-completeness based on the

expected decoding failure probability, not the ACKs already
received. Therefore, the sender does not work in a stop-and-

wait manner, but only uses R2 to determine the number of

symbols to transmit and the sequence for different blocks.

The sender transmits packets at the maximum possible speed

controlled by the window size.

In addition to R1 and R2, the maximum segment
size(MSS) of the subflows should also be considered. For
each packet assigned to the flow f, the total size of its
symbols should be smaller than the MSS of f :

n∑
i=1

vik̂i ≤ MSSf , (9)

370

Authorized licensed use limited to: Tsinghua University. Downloaded on June 16,2022 at 04:28:27 UTC from IEEE Xplore. Restrictions apply.

where k̂i denotes the number of symbols of block bi. If
the total size is larger than the MSS, one packet will be

transmitted in more than one datagram, which will influence

the data recovering. On the other hand, if the symbol is too

small, it will reduce the transmission efficiency.

B. Data Allocation Algorithm

An intuitive approach of data allocation is to assign

encoded symbols in a greedy manner, i.e., transmit the

first pending block until its expected failure probability gets

lower than the acceptable failure threshold and then handle

the next block.

Although this approach is able to meet the above re-

quirements in a single-path transmission, it will not work

efficiently for transmissions through multiple heterogeneous

paths. For example, if the delay of the pending flow is very

large compared with other flows, it would be unreasonable

to assign the symbols of the first pending block to it. Thus,

the performance of data allocation would be improved by

predicting the transmission time of the subflows.

Definition 5. The expected time needed to successfully
transmit a packet is defined as the Expected Delivery Time
(EDT) of the packet.

The EDT can be estimated similar to that of the RTT
in ordinary TCP, and it measures the overall quality of the

paths in FMTCP.

Definition 6. When a packet is sent, the time elapsed before
it is acknowledged or its timer expires is defined as the
Response Time (RT).

When a packet is sent, if it arrives successfully, RT equals
RTT; otherwise, RT equals RTO. Thus, we can compute the
expected RT of subflow f according to the Eq. (10), where
pf is the loss rate of f .

RTf = (1− pf)RTTf + pfRTOf . (10)

Definition 7. The Expected Arriving Time (EAT) of sub-
flow f denotes the time elapsed before the allocated packet
is successfully delivered to the other end on subflow f .

The EAT of subflow f can be calculated based on

two cases. If the congestion window is not full, EATf
equals EDTf . Otherwise, EATf consists of EDTf and

RTf , besides it should subtract τf (time elapsed since the
first unacknowledged packet was sent). Thus, EAT can be

expressed as Eq. (11), which is also illustrated in figure 2.

EATf =

{
EDTf if wf > 0
EDTf +RTf − τf otherwise

. (11)

When some subflows request to send packets, EAT is

used to compare the transmission time of all subflows, and

determine which subflows to allocate symbols to.

(a) wf = 0

(b) wf > 0

Figure 2. EAT evaluation

Based on the definition of EDT and EAT , we design a
data allocation algorithm as detailed in Algorithm 1.

When a subflow has the window space thus opportunity to

send data, the algorithm is triggered and the corresponding

subflow is identified as the pending flow. To ensure the

allocation to follow R1 and R2, in the algorithm, the flow

with the smallest EAT is virtually assigned a packet in
each iteration until the pending flow is assigned a packet

for transmission. The packet description vector that can

guide the packet construction is taken as the output of the

algorithm After the algorithm, the EAT for each subflow is
updated.

Note that there is no need to physically generate symbols

and update the EAT for a subflow fv when the allocation
is virtual. When fv has transmission opportunity later, it
will trigger the allocation algorithm and be assigned the

symbols from the same blocks or different blocks if the EAT

change makes the allocation result different. Thus, when

implementing this algorithm, we do not need to use the

while loop in Lines 6-12 to actually assign every symbols

to the subflows which are not pending. Instead, we can

use a binary search to compute all symbols assigned to the

pending flow. In this way the complexity of Algorithm 1 is

O(m+MSSf log n), where m is the number of subflows,

n is the number of pending blocks and MSSf is the

Maximum Segment Size of the flow f . The virtual allocation
not only helps to keep the sequence of symbol transmission

in a favorable order, but can also adapt the transmission

based on the transmission condition which impacts the EAT

estimation. For example, when the performance of a subflow

degrades, its EAT will increase and packet transmissions will

preferably select other available paths.

C. Performance Analysis of the Data Allocation Scheme

In this section, we provide analysis to show that our data

allocation scheme helps to reduce side effect due to low-

quality transmission paths and path diversity, which will in

turn improve the overall transmission quality of multi-path

371

Authorized licensed use limited to: Tsinghua University. Downloaded on June 16,2022 at 04:28:27 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 AllocatePacket(fp, F,B)
Input: the pending subflow fp; the set of subflows F ; the

set of pending blocks B = {b1, b2, . . . , bn}, and the RT ,
τ for each subflow;

Output: the description vector V for the packet to send;

1: repeat
2: f ← argming∈FEATg
3: X ← 0
4: s ← 0
5: i ← 0
6: while (i < n)and(s ≤ MSSf) do
7: i ← i+ 1
8: while (δ̃bi ≥ δ̂)and(s ≤ MSSf) do
9: vi ← vi + 1
10: s ← s+ k̂bi
11: end while
12: end while
13: EATf ← EDTf +RTf − τf
14: until f = fp
15: return V

TCP. We use rf , Rf to denote the round-trip time and RTO

of a subflow f respectively.

First we want to show that symbols lost on a subflow will

not be appended on a subflow with a lower quality. Thus,

FMTCP will not be blocked by frequent loss on low-quality

subflows. More specifically, we have the following theorem.

Theorem 1. If EDTi < EDTj , then symbols lost on the
subflow i will not be appended on the subflow j.

Proof: When a subflow i requests to append symbols
for a data block, its congestion window has space. Based

on Eq. 11, EATi = EDTi < EDTj ≤ EATj , thus this
symbol will not be immediately appended on subflow j. If
the appended symbols were not transmitted on subflow i,
then there exists a subflow k with EATk < EATi, where

EATk = EDTk +RTk − τk < EATj . (12)

Note that Eq. (12) remains valid until either subflow j or
subflow k is updated with a packet transmission. Therefore,
those appended symbols will not be transmitted on subflow

j.

Next we want to show that the EDT used in the data

allocation algorithm can reflect the actual path quality to

some extent. we define Single-path Expected Delivery Time
(SEDT) to indicate the quality of a path.

Definition 8. The Single-path Expected Delivery Time

(SEDT) for a path f is defined as the expected time to
send a packet successfully to the other end, using only path
f .

Clearly, if a path has the round-trip time rf and loss rate

pf , the SEDT can be computed as

SEDTf =
∞∑
j=0

pjf (1− pf)jRf +
rf
2

=
pfRf

1− pf
+
rf
2
. (13)

Theorem 2. If EDTi < EDTj then SEDTi < SEDTj .

Proof: We use induction to prove this theorem. If there
is only one path, then the theorem is obviously correct. We

assume the theorem is correct for n paths. Next we want to
prove the theorem is also correct for n+ 1 paths.

Without the loss of generality, assume

EDT1 < EDT2 < · · · < EDTn+1.

Using the induction hypothesis on subflow 2 to n+1, we
have the following inequality.

SEDT2 < SEDT3 < · · · < SEDTn+1. (14)

Since EDT1 < EDT2, according to Theorem 1, symbols
lost on subflow 1 will only be appended on subflow 1

while symbols lost on subflow 2 may be appended on

either subflow 2 or subflow 1. Thus EDT1 = SEDT1 and
EDT2 < SEDT2, therefore

SEDT1 < SEDT2. (15)

Combine Eq. (14) and Eq. (15) we complete the proof.

Theorem 2 shows that EDT is a proper estimation on the
quality of subflows in FMTCP.

Finally, we give an analysis to show that the allocation

scheme of FMTCP helps to reduce the time difference

of symbols transmitted on different flows, which further

reduces the disorder of packet arrival.

We assume there are two subflows. The round-trip time

and loss rate of the two paths are r1, p1, r2, p2 respectively.
We also assume r1 ≈ R1, r2 ≈ R2, where R1, R2 are

RTO of both subflows. Without the loss of generality, we

assume that flow 2 is the inferior flow. More precisely,

SEDT2/SEDT1 = m and m > 1.

Lemma 1. If Eq. (16) is satisfied, then symbols lost on
subflow 2 will only be appended on subflow 1.

r2 ≥
(
(1 + p1)(1− p2)

(1− p1)(1 + p2)
+

2

1 + p2

)
r1. (16)

Proof: We compute and estimate EDT1, EDT2 as
follows.

EDT1 ≈ 1 + p1
2(1− p1)

r1.

EDT2 ≥ (1− p2)
r2
2

+ p2(R2 + EDT1)

≈ 1 + p2
2

r2 +
p2(1 + p1)

2(1− p1)
r1.

Since RT1 − τ1 ≤ R1, if Eq. (16) is satisfied we can

372

Authorized licensed use limited to: Tsinghua University. Downloaded on June 16,2022 at 04:28:27 UTC from IEEE Xplore. Restrictions apply.

deduce that

EAT1 < EDT2

which means symbols lost on subflow 2 will only be

transmitted on subflow 1.

Theorem 3. Let T1, T2 denote the time elapsed before
the receiver successfully receives one symbol from a block,
which is initially transmitted on subflow 1 and subflow 2
respectively. Then the ratio of E(T2) and E(T1) is bounded
as Eq. (17).

E(T2)

E(T1)
≤ p2 +

2(1− p1)

1 + p1
+ (1− p2)m. (17)

Proof: E(T2) can be bounded as Eq. (18).

E(T2) = (1− p2)
r2
2

+ p2(R2 + E(T1)) + E(RT1 − τ1)

≤ (1− p2)
r2
2

+ p2(R2 + E(T1)) +R1. (18)

Plug E(T1) = EDT1 = SEDT1 andm = (1+p2)(1−p1)r2
(1+p1)(1−p2)r1

into Eq. (18) we get

E(T2)

E(T1)
≤ p2 +

2(1− p1)

1 + p1
+ (1− p2)m

In MPTCP, a packet will continuously be transmitted over

the same subflow until it is successfully received, so the ratio

is exactly m. If m > 1+2(1− p1)/p2(1+ p1) , the ratio of
FMTCP is smaller than the ratio of MPTCP. Therefore, as

the diversity of path (m) grows, FMTCP shows its advantage
toward conventional multipath TCP.

V. SIMULATION RESULTS

In this section, we evaluate our FMTCP solution through

ns-2 simulations in a two-disjoint-path topology. We sim-

ulate the heterogeneity of different subflows by keeping

the parameters of one path constant while adjusting the

quality of the other based on the parameters in Table I. We

measure the overall performance of multipath transmissions.

IETF-MPTCP [23] is taken as the performance reference for

comparison which has the same topology in simulations. The

metrics include goodput, delivery delay and jitter. Note that

it is inadvisable to take the delivery delay of each packet as a

performance metric of FMTCP because the receiver cannot

decode with the data from a single packet. Therefore, we

measure the delay by block and define the delivery delay

of a block as the duration from the transmission of its first

encoded symbol to the reception of the ACK which indicates

the successful decoding of this block. The jitter we used is

also measured by block. For a fair comparison, we partition

the data streams transmitted by IETF-MPTCP into blocks of

the same length as that of FMTCP and measure the delay

and jitter accordingly.

0 2 4 6 8
0

500

1000

1500

2000

Subflow Quality

G
oo

dp
ut

(M
B

)

MPTCP
FMTCP

Figure 3. Goodput comparison between FMTCP and IETF-MPTCP with
the variation of subflow 2. The parameters of the subflow 1 remain the
same (100ms delay, no packet loss). The delay and loss rate of the subflow
2 are shown in Table I.

A. Total Goodput Comparison

We first mimic a FMTCP connection with two subflows.

To study the impact of path diversity, we set the delay to

100ms and packet loss to zero, while varying the loss rate

and delay of subflows 2.

In Fig. 3, we observe that FMTCP outperforms IETF-

MPTCP in all cases. When the difference of either delay or

loss rate of the two paths increases, the goodput difference

between FMTCP and IETF-MPTCP also becomes larger. For

instance, when the loss rate of subflows 2 varies from 2% to

15% in Test Case 1 to 4, the goodput of IETF-MPTCP has

up to 60% degradation while the goodput of FMTCP only

decreases slightly. When the delay of subflows 2 varies from

25ms to 150ms in Test Case 5 to 8, FMTCP also significantly

outperforms IETF-MPTCP.

The high degradation of IETF-MPTCP indicates that the

performance of high-quality subflows is seriously influenced

by the low-quality ones under IETF-MPTCP scheme. As the

delay and loss rate go up, the low-quality subflows become

the bottleneck of IETF-MPTCP and the total goodput is

reduced.

There are two main reasons for FMTCP to outperform

the conventional IETF-MPTCP. First, when some packets

are lost, IETF-MPTCP subflows have to retransmit lost

packets. If some necessary packets have not arrived, the

receiver has to wait for these packets before submission

to the application. However, FMTCP only appends some

new symbols of that block instead of retransmitting the

lost symbols and all the symbols sent after it. Therefore,

transmissions from inferior subflows will not block those

from good ones and the total goodput is improved. Second,

FMTCP employs a data-allocation algorithm which predicts

the arriving order of different symbols. The scheduling

algorithm helps to reduce the disorder of packets which are

transmitted on different paths.

We further study the stability of the goodput, by using a

connection with two subflows for both IETF-MPTCP and

FMTCP. Loss rate of subflow 2 varys over time thus the

performance of FMTCP under bursty packet losses is studied

here. In Fig. 4, the delay of both paths is set to 100ms. The

373

Authorized licensed use limited to: Tsinghua University. Downloaded on June 16,2022 at 04:28:27 UTC from IEEE Xplore. Restrictions apply.

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Time (s)

G
oo

dp
ut

 R
at

e
(M

B
ps

)

FMTCP
MPTCP

(a) p = 25%

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Time (s)

G
oo

dp
ut

 R
at

e
(M

B
ps

)

FMTCP
MPTCP

(b) p = 35%

Figure 4. Comparison between FMTCP and IETF-MPTCP. The loss rate
of the subflow 2 surges to p at 50s and returns to 1% at 200s

0 2 4 6 8
0

100

200

300

400

500

Subflow Quality

D
el

iv
er

y
D

el
ay

(m
s)

MPTCP
FMTCP

Figure 5. The average delivery delay of blocks of FMTCP and IETF-
MPTCP. The parameters of the subflow 1 remain the same (100ms delay,
no packet loss). The delay and loss rate of the subflow 2 are shown in
Table I.

initial loss rate of both paths is 1%. At 50 seconds, the loss

rate of the subflow 2 surges to 25% in Fig. 4(a) and 35%

in Fig. 4(b) respectively. At 200 seconds, the loss rate of

subflow 2 returns to 1%.

We observe that IETF-MPTCP also performs worse than

FMTCP when the quality of subflows changes rapidly. The

total goodput rate of IETF-MPTCP fluctuates severely under

the loss surge of subflow 2. However, FMTCP can adapt

to this variation well and the goodput rate is much more

stable. In Fig.4(b), IETF-MPTCP cannot even work (with its

goodput reduced to almost 0) when the loss rate of subflow

2 surges to 35%, while FMTCP only reduces the goodput to

half. This demonstrates that FMTCP also provides a more

stable goodput.

B. Delivery Delay and Jitter Comparison

In this section, we study the delivery delay and jitter

of FMTCP, which are used to measure the efficiency and

stability. These metrics are especially important for some ap-

plications. For instance, if the jitter is high, the transmission

protocol is more likely to send packets in a bursty manner

and thus is not suitable to support multimedia streaming,

which requires a stable transmission service.

Table I
PATH PARAMETERS OF SUBFLOWS 2

Test Case 1 2 3 4 5 6 7 8

Delay (ms) 100 100 100 100 25 50 100 150

Loss Rate (%) 2 5 10 15 10 10 10 10

0 2 4 6 8
0

50

100

150

200

Subflow Quality

Ji
tte

r(
m

s)

MPTCP
FMTCP

Figure 6. The average jitter of FMTCP and IETF-MPTCP. The parameters
of subflow 1 remain the same (100ms delay, no packet loss). The delay and
loss rate of the subflow 2 are shown in Table I.

0 200 400 600 800 1000
0

1

2

3

4

5

Block Sequence

Tr
an

sm
is

si
on

 T
im

e
(s

)

MPTCP
FMTCP

Figure 7. The delivery delay of blocks of FMTCP and IETF-MPTCP. The
parameters of subflow 1 remain the same (100ms delay, no packet loss).
The delay of subflows 2 is 100ms while the loss rate is 15%.

Fig. 5 shows the average delivery delay of the blocks of

FMTCP and IETF-MPTCP in different scenarios. It is clear

that the blocks transmitted with IETF-MPTCP experience

higher delivery delays than those transmitted by FMTCP.

This is because FMTCP, with its data allocation mechanism,

is able to send the most urgent packets as soon as possible. In

other words, if the receiver needs more symbols to decode

the very first pending block, FMTCP would transmit the

required symbols via the path with the lowest EAT which

reduces the wait time for decoding the block. Therefore, the

delivery delay of a block is reduced. Particularly, when the

path quality falls, the delivery delay of IETF-MPTCP grows

considerably as the impact of those low-quality subflows is

amplified.

We also investigate the jitter of the blocks of the two

protocols and the results are in Fig. 6. The difference in jitter

performance is even larger than that of the delay difference,

especially when the quality of one subflow is very low. The

reason is similar to the delay comparison case. FMTCP

can assign the urgent packets to the high-quality subflow

while IETF-MPTCP does not consider the path quality. More

specifically, assigning an urgent packet to different subflows

leads to different delivery delay and the gap become larger

as the quality of one flow gets lower. FMTCP always try

to send the packets through the high-quality subflow so the

delivery delay remains stable; IETF-MPTCP does not have

this feature and therefore the delivery delay varies according

to the path selected.

374

Authorized licensed use limited to: Tsinghua University. Downloaded on June 16,2022 at 04:28:27 UTC from IEEE Xplore. Restrictions apply.

We make a more closed examination of the results through

another simulation. Fig. 7 shows the delivery delay over time

in Test Case 4, where the loss rate of subflow 2 is high

(15%). We can see an extremely high fluctuations on the

curve of IETF-MPTCP, with the highest delivery delay five

times that of the average value, while the delay of FMTCP

is much more stable. Clearly, those high delay bursts are

caused by the large loss rate of the subflow 2. Because

IETF-MPTCP cannot avoid allocating urgent packets to the

subflow 2, it often suffers from the high delivery delay,

which eventually increases its jitter.

VI. CONCLUSION

In this paper, we propose FMTCP, an extension to TCP,

to support efficient TCP transmissions in multi-interface

networks. We employ a fountain code to encode transmission

data and take advantage of its random coding scheme to

avoid retransmissions in MPTCP. Taking advantage of the

features of the fountain code, we propose an allocation

algorithm to flexibly allocate encoded symbols to different

subflows based on the expected packet arrival time over

different paths. Both theoretical analysis and simulation

results demonstrate that FMTCP alleviates the bottleneck

problem due to the quality diversity of multiple paths and

outperforms IETF-MPTCP, a typical MPTCP solution, in

various scenarios. In addition, FMTCP has stable perfor-

mance when there is a burst of packet loss. The simulation

results also show that FMTCP is suitable for multimedia

transportation and real-time applications with low delay and

jitter.

ACKNOWLEDGMENT

This work is supported by NSF of China (60911130511,

60873252), 973 Program of China (2009CB320503), NSF

of US CNS-0751121 and CNS-0628093.

REFERENCES

[1] D. Wischik, C. Raiciu, A. Greenhalgh, M. Handley, ”Design,
implementation and evaluation of congestion control for mul-
tipath TCP,” in Proceedings of the 8th USENIX conference on
Networked systems design and implementation, April, 2011.

[2] Sebastien Barre, Christoph Paasch, and Olivier Bonaventure,
”MultiPath TCP: From Theory to Practice,” in Networking, vol.
6640, 2011.

[3] H.-Y. Hsieh and R. Sivakumar, ”A Transport Layer Apporach
for Achieving Aggregate Bandwidths on Multi-homed Mobile
Hosts,” in Proc. ACM Mobicom, 2002.

[4] H.-Y. Hsieh, Y.Z.K.-H. Kim, and R.Sivakumar, ”A Receiver-
centric Transport Protocol for Mobile Hosts with Heteroge-
neous Wireless Interfaces,” in Proc. ACM Mobicom, 2003.

[5] C. Lai, K.-C. Leung, and V.O.K. Li, ”Enhancing Wireless TCP:
A Serialized-Timer Approach,” in Proc. of IEEE INFOCOM
2010, Mar. 2010.

[6] S. Mascolo, C. Casetti, M. Gerla, M.Y. Sanadidi, and R. Wang,
”TCP westwood: Bandwidth estimation for enhanced transport
over wireless links”, in MobiCom ’01: Proceedings of the
7th annual international conference on Mobile computing and
networking, 2001.

[7] Y. Huang, M. Ghaderi, D. Towsley, and W. Gong, ”TCP
Performance in Coded Wireless Mesh Networks,” in Proc. of
IEEE SECON 2008.

[8] Y. Li, Y. Zhang, L. Qiu, and S. Lam,”Smarttunnel: A Multipath
Approach to Achieving Reliability in the Internet,” in Proc. of
Infocom’07, 2007.

[9] J.K. Sundararajan, D. Shah, M. Medard, M. Mitzenmacher, and
J. Barro, ”Network coding meets TCP,” in Proc. of Infocom’09
2009.

[10] H. Han and S. Shakkottai, ”Multi-Path TCP: A Joint Conges-
tion Control and Routing Scheme to Exploit Path Diversity in
the Internet,” IEEE/ACK Transactions on Networking, vol. 14,
no. 6, Dec 2006.

[11] G.-I. Kwon, J.W. Byers, ”ROMA: Reliable Overlay Multicast
with Loosely Coupled TCP Connections,” in Proc. of IEEE
INFOCOM, 2004.

[12] J. Chen, K. Xu, and M. Gerla, ”Multipath TCP in Lossy Wire-
less Environment”, in Proc. IFIP Third Annual Mediterranean
Ad Hoc Networking Workshop (Med-Hoc-Net ’04), pages 263-
270, 2004.

[13] Youngseok Lee, Ilkyu Park, and Yanghee Choi, ”Improving
TCP Performance in Multipath Packet Forwarding Networks,”
in Journal of Communications and Networks, vol. 4, 2002.

[14] C. Raiciu, D. Wischik, and M. Handley, ”Practical Congestion
Control for Multipath Transport Protocols,” University College
of London Technical Report, 2009.

[15] D. Wischik, M. Handley, and C. Raiciu, ”Control of multipath
TCP and optimization of multipath routing in the Internet,” in
NETWORKING CONTROL AND OPTIMIZATION, vol. 5894,
2009.

[16] V.Sharm, S.Kalyanaraman, K.Kar and K.K.Ramakrishnan,
”MPLOT:A Transport Protocol Exploiting Multipath Diversity
using Erasure Code”, in Proc. IEEE INFOCOM, 2008.

[17] D.J.C. MacKay, ”Fountain codes,” in IEE
Proc.Commun.,vol.152, pp. 1062-1068, 2005.

[18] R. Stewart, ”Stream Control Transmission Protocol”, IETF,
Standards Track RFC 4960, Sept. 2007

[19] J. R. Iyengar, P. D. Amer, and R. Stewart, ”Concurrent Mul-
tipath Transfer Using SCTP Multihoming Over Independent
End-to-End Paths”, in IEEE/ACM Trans. Net., vol.14, no 5,
Oct. 2006, pp. 951C64.

[20] J. Iyengar, P. Amer, R. Stewart. ”Performance Implications of
Receive Buffer Blocking in Concurrent Multipath Transfer”, in
Computer Communications, 2/07, 30(4), pp 818-829.

[21] Y. Hwang, B.O. Obele, and H. Lim, ”Multipath transport
protocol for heterogeneous multi-homing networks”, in Pro-
ceedings of the ACM CoNEXT Student Workshop, 2010

[22] M. Becke, T. Dreibholz, H. Adhari, and E.P. Rathgeb, ”On
the Fairness of Transport Protocols in a Multi-Path Environ-
ment”, in Proceedings of the IEEE International Conference
on Communications (ICC), Ottawa/Canada, 2012

[23] A. Ford, C. Raiciu, M. Handley, S. Barre and J. Iyengar,
”Architectural Guidelines for Multipath TCP Development”,
RFC6182(March 2011), www.ietf.ort/rfc/6182.

[24] T. Dreibholz, M. Becke, H. Adhari, and E.P. Rathgeb, ”On the
impact of congestion control for Concurrent Multipath Transfer
on the transport layer”, in Proceedings of the 2011 11th
International Conference on Telecommunications (ConTEL),
pp. 397-404, 2011.

375

Authorized licensed use limited to: Tsinghua University. Downloaded on June 16,2022 at 04:28:27 UTC from IEEE Xplore. Restrictions apply.

